Search results for "tumor targeting"

showing 10 items of 10 documents

Balancing Passive and Active Targeting to Different Tumor Compartments Using Riboflavin-Functionalized Polymeric Nanocarriers

2017

Riboflavin transporters (RFTs) and the riboflavin carrier protein (RCP) are highly upregulated in many tumor cells, tumor stem cells, and tumor neovasculature, which makes them attractive targets for nanomedicines. Addressing cells in different tumor compartments requires drug carriers, which are not only able to accumulate via the EPR effect but also to extravasate, target specific cell populations, and get internalized by cells. Reasoning that antibodies are among the most efficient targeting systems developed by nature, we consider their size (-10-15 nm) to be ideal for balancing passive and active tumor targeting. Therefore, small, short-circulating (10 kDa, -7 nm, t1/2 - 1 h) and large…

MaleBiodistributionMaterials scienceCell SurvivalPolymersSurface PropertiesRiboflavinBioengineering02 engineering and technology010402 general chemistry01 natural sciencesPolyethylene GlycolsMiceProstate cancerDownregulation and upregulationRiboflavin-carrier proteinCell Line TumorPEG ratiomedicineAnimalsHumansTissue DistributionGeneral Materials ScienceParticle Sizepassive and active tumor targetingCell ProliferationDrug CarriersbiologyMechanical EngineeringMembrane Transport ProteinsProstatic NeoplasmsTransporterGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physicsmedicine.diseasen/a OA procedure0104 chemical sciencesCell biologybranched PEGBiochemistrybiology.proteinHeterograftsAntibody0210 nano-technologyDrug carrierNano Letters
researchProduct

1,5-Disubstituted 1,2,3-Triazoles as Amide Bond Isosteres Yield Novel Tumor-Targeting Minigastrin Analogs.

2021

[Image: see text] 1,5-Disubstituted 1,2,3-triazoles (1,5-Tz) are considered bioisosteres of cis-amide bonds. However, their use for enhancing the pharmacological properties of peptides or proteins is not yet well established. Aiming to illustrate their utility, we chose the peptide conjugate [Nle(15)]MG11 (DOTA-dGlu-Ala-Tyr-Gly-Trp-Nle-Asp-Phe-NH(2)) as a model compound since it is known that the cholecystokinin-2 receptor (CCK2R) is able to accommodate turn conformations. Analogs of [Nle(15)]MG11 incorporating 1,5-Tz in the backbone were synthesized and radiolabeled with lutetium-177, and their pharmacological properties (cell internalization, receptor binding affinity and specificity, pla…

Biodistribution3-TriazolesStereochemistryPeptidomimeticmedia_common.quotation_subject1201 natural sciencesBiochemistryTurn (biochemistry)Drug Discovery[CHIM]Chemical SciencesPeptide bondInternalizationReceptorCancermedia_commonTumor Targeting[CHIM.ORGA]Chemical Sciences/Organic chemistry010405 organic chemistryChemistry123-Triazoles; Peptidomimetics; Structure−activity relationships; Radiopharmaceuticals; Tumor targeting; CancerStructure-Activity RelationshipsOrganic ChemistryBiological activity0104 chemical sciences010404 medicinal & biomolecular chemistryYield (chemistry)PeptidomimeticsRadiopharmaceuticalsACS medicinal chemistry letters
researchProduct

Not just for tumor targeting: unmet medical needs and opportunities for nanomedicine.

2015

During the last 3 decades, nanomedicines have provided novel opportunities to improve the delivery of chemotherapeutics in cancer therapy effectively. However, many principles learnt from there have the potential to be transferred to other diseases. This perspective article, on the one hand, critically reflects the limitations of nanomedicines in tumor therapy and, on the other hand, provides alternative examples of nanomedicinal applications in immunotherapy, noninvasive drug deliveries across epithelial barriers and strategies to combat intra- and extra-cellular bacterial infections. Looking ahead, access to highly complex nanoparticular delivery vehicles given nowadays may allow further…

Tumor targetingmedicine.medical_specialtybusiness.industryBiomedical EngineeringCancer therapyMedicine (miscellaneous)Tumor therapyBioengineeringDevelopmentT-Cell EpitopesDrug Delivery SystemsNanomedicineNeoplasmsImmunologymedicineNanomedicineHumansNanoparticlesGeneral Materials ScienceImmunotherapyIntensive care medicinebusinessNanomedicine (London, England)
researchProduct

Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors

2018

Tumors are characterized by leaky blood vessels, and by an abnormal and heterogeneous vascular network. These pathophysiological characteristics contribute to the enhanced permeability and retention (EPR) effect, which is one of the key rationales for developing tumor-targeted drug delivery systems. Vessel abnormality and heterogeneity, however, which typically result from excessive pro-angiogenic signaling, can also hinder efficient drug delivery to and into tumors. Using histidine-rich glycoprotein (HRG) knockout and wild type mice, and HRG-overexpressing and normal t241 fibrosarcoma cells, we evaluated the effect of genetically induced and macrophage-mediated vascular normalization on th…

Histidine-rich glycoproteinUT-Hybrid-DPharmaceutical ScienceVascular normalization02 engineering and technologyPermeabilityArticleMice03 medical and health scienceschemistry.chemical_compoundDrug Delivery Systems0302 clinical medicinePolymethacrylic AcidsCell Line TumorNeoplasmsmedicineAnimalsMethacrylamideTissue DistributionpHPMAFibrosarcomaMice Knockoutchemistry.chemical_classificationDrug CarriersProteins021001 nanoscience & nanotechnologymedicine.diseasePathophysiologyUp-RegulationMice Inbred C57BLHRGNanomedicineTumor targetingchemistryTargeted drug deliveryPermeability (electromagnetism)030220 oncology & carcinogenesisDrug deliveryDrug deliveryCancer researchEPR0210 nano-technologyGlycoprotein
researchProduct

Death receptors as targets in cancer

2014

Anti-tumour therapies based on the use PARAs (pro-apoptotic receptor agonists), including TRAIL (TNF-Related Apoptosis inducing Ligand) or monoclonal antibodies targeting TRAIL-R1 or TRAIL-R2, have been disappointing so far, despite clear evidence of clinical activity and lack of adverse events for the vast majority of these compounds, whether combined or not with conventional or targeted anti-cancer therapies. This brief review aims at discussing the possible reasons for the lack of apparent success of these therapeutic approaches and at providing hints in order to rationally design optimal protocols based on our current understanding of TRAIL signalling regulation or resistance for future…

Tumor targetingResistance[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular Biology[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyTRAILApoptosisTherapyFasTNF-receptor superfamily[ SDV.BBM ] Life Sciences [q-bio]/Biochemistry Molecular Biology
researchProduct

A New Hyaluronic Acid Derivative Obtained from Atom Transfer Radical Polymerization as a siRNA Vector for CD44 Receptor Tumor Targeting.

2015

Two derivatives of hyaluronic acid (HA) have been synthesized by atom transfer radical polymerization (ATRP), starting from an ethylenediamino HA derivative (HA-EDA) and by using diethylaminoethyl methacrylate (DEAEMA) as a monomer for polymerization. Both samples, indicated as HA-EDA-pDEAEMA a and b, are able to condense siRNA, as determined by gel retardation assay and resulting complexes show a size and a zeta potential value dependent on polymerization number, as determined by dynamic light scattering measurements. In vitro studies performed on HCT 116 cell line, that over express CD44 receptor, demonstrate a receptor mediated uptake of complexes, regardless of their surface charge. New…

Materials Chemistry2506 Metals and AlloyssiRNA deliveryGenetic VectorsBioengineeringATRPATRP; CD44; hyaluronic acid; siRNA delivery; tumor targeting; Antigens CD44; Cell Line Tumor; Drug Delivery Systems; Humans; Methacrylates; Neoplasm Proteins; Genetic Vectors; Hyaluronic Acid; Neoplasms; RNA Small Interfering; Biotechnology; Bioengineering; Biomaterials; Polymers and Plastics; Materials Chemistry2506 Metals and AlloysMethacrylateNeoplasm ProteinDrug Delivery SystemsCell Line TumorNeoplasmsHumansCD44Hyaluronic AcidRNA Small InterferingPolymers and Plastictumor targetingBiomaterialAntigens CD44Neoplasm ProteinsHyaluronan ReceptorsNeoplasmMethacrylatesGenetic VectorDrug Delivery SystemHumanBiotechnologyMacromolecular bioscience
researchProduct

Amide-to-triazole switch vs. in vivo NEP-inhibition approaches to promote radiopeptide targeting of GRPR-positive tumors

2017

Abstract Introduction Radiolabeled bombesin (BBN)-analogs have been proposed for diagnosis and therapy of gastrin-releasing peptide receptor (GRPR)-expressing tumors, such as prostate, breast and lung cancer. Metabolic stability represents a crucial factor for the success of this approach by ensuring sufficient delivery of circulating radioligand to tumor sites. The amide-to-triazole switch on the backbone of DOTA-PEG 4 -[Nle 14 ]BBN(7–14) ( 1 ) was reported to improve the in vitro stability of resulting 177 Lu-radioligands. On the other hand, in-situ inhibition of neutral endopeptidase (NEP) by coinjection of phosphoramidon (PA) was shown to significantly improve the in vivo stability and …

MaleCancer ResearchBiodistributionStereochemistryPharmacology[ CHIM ] Chemical Sciences030218 nuclear medicine & medical imagingPolyethylene Glycols03 medical and health scienceschemistry.chemical_compoundHeterocyclic Compounds 1-RingMice0302 clinical medicineIn vivoCell Line TumorRadioligandAnimalsHumans[CHIM]Chemical SciencesRadiology Nuclear Medicine and imagingTissue DistributionNeprilysinTumor targeting GRPR-radioligand 177Lu-bombesin Triazolyl-bombesin NEP-inhibitionPhosphoramidonGlycopeptidesBombesinTriazolesAmidesIn vitro3. Good healthBioavailabilityReceptors Bombesinchemistry030220 oncology & carcinogenesisMolecular MedicineBombesinNeprilysin
researchProduct

Harnessing the potential of noninvasive in vivo preclinical imaging of the immune system: challenges and prospects.

2016

Preclinical imaging has become a powerful method for investigation of in vivo processes such as pharmacokinetics of therapeutic substances and visualization of physiologic and pathophysiological mechanisms. These are important aspects to understand diseases and develop strategies to modify their progression with pharmacologic interventions. One promising intervention is the application of specifically tailored nanoscale particles that modulate the immune system to generate a tumor targeting immune response. In this complex interaction between immunomodulatory therapies, the immune system and malignant disease, imaging methods are expected to play a key role on the way to generate new thera…

0301 basic medicineFluorescence-lifetime imaging microscopyTumor targetingBiomedical EngineeringMedicine (miscellaneous)Contrast MediaBioengineeringDevelopmentBiologyPharmacologic interventionMalignant diseaseImmunomodulation03 medical and health sciences0302 clinical medicineImmune systemIn vivoNeoplasmsBioluminescence imagingAnimalsHumansGeneral Materials ScienceOptical ImagingMagnetic Resonance Imaging030104 developmental biology030220 oncology & carcinogenesisImmune SystemPositron-Emission TomographyImmunologyDisease ProgressionNeurosciencePreclinical imagingNanomedicine (London, England)
researchProduct

Nanoparticles of a polyaspartamide-based brush copolymer for modified release of sorafenib: In vitro and in vivo evaluation.

2017

Abstract In this paper, we describe the preparation of polymeric nanoparticles (NPs) loaded with sorafenib for the treatment of hepatocellular carcinoma (HCC). A synthetic brush copolymer, named PHEA-BIB-ButMA (PBB), was synthesized by Atom Trasnfer Radical Polymerization (ATRP) starting from the α-poly( N -2-hydroxyethyl)- d , l -aspartamide (PHEA) and poly butyl methacrylate (ButMA). Empty and sorafenib loaded PBB NPs were, then, produced by using a dialysis method and showed spherical morphology, colloidal size, negative ζ potential and the ability to allow a sustained sorafenib release in physiological environment. Sorafenib loaded PBB NPs were tested in vitro on HCC cells in order to e…

3003MaleHepatocellular carcinomamedicine.medical_treatmentPharmaceutical Science02 engineering and technologyATRPPharmacology01 natural sciencesDrug Delivery SystemsCopolymerChemistryATRP; Hepatocellular carcinoma; Sorafenib; Tumor targeting; α-Poly(N-2-hydroxyethyl)-DL-aspartamide; 3003Liver NeoplasmsSorafenib021001 nanoscience & nanotechnologyDrug delivery0210 nano-technologymedicine.drugSorafenibNiacinamideCarcinoma HepatocellularCell SurvivalRadical polymerizationIntraperitoneal injectionL-aspartamideMice NudeAntineoplastic AgentsEnhanced permeability and retention effect010402 general chemistryPolymethacrylic AcidsIn vivoCell Line TumormedicineAnimalsHumansneoplasmsProtein Kinase InhibitorsPhenylurea Compoundstechnology industry and agriculturedigestive system diseasesIn vitro0104 chemical sciencesDrug LiberationTumor targetingDelayed-Action PreparationsBiophysicsα-Poly(N-2-hydroxyethyl)-DNanoparticlesα-Poly(N-2-hydroxyethyl)-DL-aspartamidePeptidesJournal of controlled release : official journal of the Controlled Release Society
researchProduct

Death receptors as targets in cancer

2013

Anti-tumour therapies based on the use PARAs (pro-apoptotic receptor agonists), including TRAIL (TNF-Related Apoptosis inducing Ligand) or monoclonal antibodies targeting TRAIL-R1 or TRAIL-R2, have been disappointing so far, despite clear evidence of clinical activity and lack of adverse events for the vast majority of these compounds, whether combined or not with conventional or targeted anti-cancer therapies. This brief review aims at discussing the possible reasons for the lack of apparent success of these therapeutic approaches and at providing hints in order to rationally design optimal protocols based on our current understanding of TRAIL signalling regulation or resistance for future…

Pharmacology0303 health sciencesTumor targetingmedicine.drug_classCancerTNF-Related Apoptosis-Inducing LigandBiologyMonoclonal antibodyApoptosis Regulatory ProteinsBioinformaticsmedicine.disease3. Good healthClinical trial03 medical and health sciences0302 clinical medicine030220 oncology & carcinogenesisImmunologymedicineDeath ReceptorsAdverse effect030304 developmental biologyBritish Journal of Pharmacology
researchProduct